If it's not what You are looking for type in the equation solver your own equation and let us solve it.
165=w^2+4w
We move all terms to the left:
165-(w^2+4w)=0
We get rid of parentheses
-w^2-4w+165=0
We add all the numbers together, and all the variables
-1w^2-4w+165=0
a = -1; b = -4; c = +165;
Δ = b2-4ac
Δ = -42-4·(-1)·165
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-26}{2*-1}=\frac{-22}{-2} =+11 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+26}{2*-1}=\frac{30}{-2} =-15 $
| 4/9(2x-4=48 | | 8=17-z | | 6x−60+8x+16=180 | | 11x-28-8x=20 | | 7/8(4/5x+16)=3/5(1/2x-10) | | 58.4-s=2.6 | | 6x+39=2x+11 | | 23+y−19=79 | | 3/4x+5=2/3 | | (2-x)=6 | | -4x-3x-159=86 | | x+1/5x-2=4/5 | | 3x^-4-5x^-2-2=0 | | m/10-3=-2 | | 70=94-x | | 7x−4+9x−40=180 | | X-1/3*x=2/3 | | 5s*4=54 | | 4.25+h=56.875 | | 1,8x+32=33 | | 4p+9=2p-1 | | 2p-6=8p+2 | | -7+9x;x=3 | | 0=4.905t^2+2.7t-200 | | 7x^-1+(3x^-1/2)+2=0 | | 41/4+h=567/8 | | 50=-10(x-2) | | 5p+4=29 | | -4+x/2=1 | | 35-5a=-30 | | -24+6s=-48 | | 2x-6;x=9 |